

Global Surveillance The Advantages of New Vantages for Earth Science:

Earth Observing Strategies: Options and Analysis

Gordon Johnston
NASA Headquarters
Office of Earth Science

Outline

- Aspects of Orbit Value
- II. Range
- III. Lighting/ Time of Day
- IV. Geocoverage/ Geolocation
- V. Correlation Between Range and Geolocation
- VI. Space Mission Vantage Types
- VII. New Technologies May Add Options

I. Aspects of Orbit Value

- Often Use Classifications Based On How Individual Missions Observe
 - Region of Electromagnetic Spectrum (e.g., Visvs. IR, lidar vs. radar)
 - Spectral & Spatial Coverage & Accuracy (e.g., Imagers, Spectrometers, Radiometers)
 - Physics of Observation (e.g., In Situ vs. Passive Remote vs. Active Remote Sensing)
- This Paper Focuses on 3 Main Aspects of Orbits that Users Find Valuable
 - Range/ Continuity of Coverage
 - Lighting/ Time of Day
 - Ground-track Geolocation

II. Range

- Close Range for Resolution & Active Sensing
- Distant Range for Coverage/ Synoptic View
- Constant Range Can Simplify Instrument Design & Operation
 - Correlated to Rate of Spacecraft Motion
 - Affects Scanning Rates, etc.

Close Range for Resolution & Active Sensing

- Diffraction Limit
 - For Given
 Wavelength, Passive
 Resolution Driven By
 Range and Telescope
 Aperture
- Range Strongly
 Affects Power
 Required for Active
 Sensing

Image courtesy of DigitalGlobe, www.digitalglobe.com

Distant Range for Coverage/ Synoptic View

Common Approaches for Constant or Near Constant Range

- Circular (or Near Circular) Orbits:
 - Distant Circular Orbits to Achieve Synoptic Coverage
 - Geostationary (24 Hour Orbit Period)
 - LEO (Close) Orbits for High Resolution or to Reduce Active Sensing (Lidar/Radar) Power
 - Higher LEO and MEO Orbits to Balance Coverage and Power Requirements
- Highly Eccentric Orbits
 - Most of Orbit Spent Near Apogee
 - Molniya Orbits
- Earth/Moon and Earth/Sun Lagrange Points
 - Stable (but Distant) Locations

III. Lighting/Local Time of Day

- Similar vs. Different Lighting/ Time of Day
 - Ease of Comparison vs. Diurnal Sampling
 - Dependent Upon Goals of Specific Missions
- Generalized Rule For Optical Instruments
 - Spatial Resolution Instruments Prefer Sun Angles
 That Enhance Shadows for Feature Contrast
 - Spectral Resolution Instruments Prefer Sun Angles That Reduce Shadowing and Enhance Spectral Contrast
- Time of Day Effects on Subject Area
 - Correlations With Cloud/Fog Cover For the Areas of Interest

Common Approaches for Constant Lighting/Time of Day

- Close Circular Sun-Synchronous Orbits
 - Orbit Crosses Equator at Same Relative Time of Day
 - Secular Variation in Right Ascension of Ascending Node Matches Earth's Rate Around the Sun
 - Requires Highly Inclined, Retrograde Orbit
 - Very Common
 - Weather Satellites, Landsat, IKONOS, etc.
- Earth/Sun Lagrange Points
 - Constant Lighting, but at Astronomical Distances
- Others Appear Possible

Common Approaches for <u>Variable</u> Lighting/Time of Day

- Distant Circular Orbits:
 - Geostationary (24 Hour Orbit Period)
 - Views Constant Geolocation At All Local Times of Day
 - 12 Hours of Daylight, 12 Hours of Night Coverage
- LEO Orbits Designed to Provide Variable Lighting
 - Example: TIMED Mission
 - Uses Same Effect As Sun-Synchronous Orbits, But With Opposite Sign
 - Secular Variation Adds to Effect of Earth's Motion Around The Sun
 - Dawn to Dusk Four Times Per Year

Operational Value of Lighting/ Local Time of Day

- Constant Lighting Can Simplify Instrument Design & Operation
 - Exposure/Gain States
 - Aperture/Time Required to Collect Adequate Signal
- Spacecraft Solar Panel Illumination
 - Design Consideration for High Power (Radar, Lidar) Missions
 - Sun-synchronous Polar Orbits with 6 AM/6 PM Equatorial Crossing Provide Constant Solar Power (Except For Brief Period Near One Solstice per Year)

IV. Geocoverage/Geolocation

- Orbits Are Often Designed For Repeat Ground-Track
 - Subject Benefits
 - Spatially Correlated Observations
 - Direct Comparison of Time-Dependent Phenomena
 - More Predictable Operations
 - Instrument State Changes (Land/Sea Boundaries, etc.)
 - Ground-Station Passes, etc.
 - Examples: Exact Ground Track Repeat Every x Days
 - 1 Orbit per Day for Geostationary (Constant Geolocation)
 - Half-Day Orbits for GPS and Molniya Satellites
 - Nearly Same Geolocation for 11 Hours Per Day
 - 16 Day Repeats (233 Orbits) for Terra, Aqua, etc.

V. Correlation Between Distant Range and Constant Geolocation

- Distant Range Orbits Can Match or Nearly Match Earth Rotation Rate
 - Enables Constant or Near-Constant Geolocation
 - Geostationary: Constant Geolocation
 - Molniya: Near-constant Geolocation for 11
 Out of 12 Hour Orbit (Alternate Sides of Earth)
- Move Away to See Finer Time Scales!

VI. Space Mission Vantage Types

Range	Lighting/ TOD	Geo- Location	Example Orbit Types	Mission Examples
Close	Variable	Non- Repeat	Non-Repeating Non-Synchronous Orbits	ISS
Close	Variable	Repeating	Repeat Groundtrack Non- Synchronous Orbits	
Close	Similar	Non- Repeat	Non-Repeating Sun-Synchronous (Retrograde Polar) Orbits	
Close	Similar	Repeating	Repeat Groundtrack Sun- Synchronous Orbits	Landsat, Terra
Distant	Variable	Non- Repeat	GEO Transfer Orbits, MEO, HEO, Earth-Moon Lagrange	GOES
Distant	Variable	Repeating	Geosynchronous Orbits, Molniya Orbits	
Distant	Similar	Non- Repeat	Sun-Earth Lagrange Points, Gap?	DSCO
Distant	Similar	Repeating	Potential Gap: ESSE Orbits?	

VII. New Technologies May Add Options

Constant Thrust

- Shift Orbit/MaintainLighting Alignment
 - "Bias" Geostationary Orbits Towards Polar Latitudes
 - "Bias" Lagrange Points Towards Earth:
- CandidateTechnologies
 - Solar Sails
 - Nuclear Electric

Technology Push vs. Science Pull

– Will Scientists Find New Orbits Useful?

Backup Slides

ESSE Orbit Comparison 9 Orbits/2 Days and 5 Orbits/Day

Orbit Comparison 5/1, 9/2 ESSEO & Geostationary

ESSE Orbit

- Orbit That Precesses So That Apogee Remains Over Local Noon
 - Allows Two Satellites to Provide Continuous Daytime Coverage
 - Modeled Using Satellite Took Kit (Version 4.2.1)
 - J₄ Propagation
 - Full Year to Confirm Rotation of Apogee
 - Modeled Two Cases:
 - 9 Orbits Per 2 Days
 - » Two Satellite Effective Daily Repeat Ground-track by Alternating Tracks Every Other Day
 - » Maximum Apogee, Low Perigee (273 km.)
 - 4 Orbits Per Day
 - » Daily Repeat Ground Track
 - » Lower Apogee, Higher Perigee

ESSE Orbit

9 Orbits/2 Days

- Two Satellite Effective Daily Repeat Ground-track by Alternating Tracks Every Other Day
- Orbit Properties
 - Period: 5 hr. 20 min. 10 sec.
 - Eccentricity: 0.57
 - Altitude of Perigee: 273 km.
 - Altitude of Apogee: 17,976 km.

5 Orbits/Day

- Orbit Properties
 - Period: 4 hr. 48 min. 8 sec.
 - Eccentricity: 0.49
 - Altitude of Perigee: 1,025 km.
 - Altitude of Apogee: 15,120 km.